skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Greene, Jenny E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Disk continuum reverberation mapping is one of the primary ways we learn about active galactic nuclei (AGN) accretion disks. Reverberation mapping assumes that time-varying X-rays incident on the accretion disk drive variability in UV–optical light curves emitted by AGN disks and uses lags between X-ray and UV–optical variability on the light-crossing timescale to measure the radial temperature profile and extent of AGN disks. However, recent reverberation mapping campaigns have revealed oddities in some sources, such as weakly correlated X-ray and UV light curves, longer than anticipated lags, and evidence of intrinsic variability from disk fluctuations. To understand how X-ray reverberation works with realistic accretion disk structures, we perform 3D multifrequency radiation magnetohydrodynamic simulations of X-ray reprocessing by the UV-emitting region of an AGN disk using sophisticated opacity models that include line opacities for both the X-ray and UV radiation. We find there are two important factors that determine whether X-ray irradiation and UV emission will be well-correlated: the ratio of X-ray to UV luminosity and significant absorption. When these factors are met, the reprocessing of X-rays into UV is nearly instantaneous, as is often assumed, although linear reprocessing models are insufficient to fully capture X-ray reprocessing in our simulations. Nevertheless, we can still easily recover mock lags in our light curves using software that assumes linear reprocessing. Finally, the X-rays in our simulation heat the disk, increasing temperatures by a factor of 2–5 in the optically thin region, which could help explain the discrepancy between measured and anticipated lags. 
    more » « less
  2. Abstract Supermassive black holes (SMBHs) are found in the centers of massive galaxies, and galaxy mergers should eventually lead to SMBH mergers. Quasar activity has long been associated with galaxy mergers, so here we investigate if supermassive black hole binaries (SMBHBs) are preferentially found in quasars. Our multimessenger investigation folds together a gravitational-wave background signal from NANOGrav, a sample of periodic active galactic nucleus candidates from the Catalina Real-Time Transient Survey, and a quasar mass function, to estimate an upper limit on the fraction of quasars which could host an SMBHB. We find at 95% confidence that quasars are at most 5 times as likely to host an SMBHB as a random galaxy. Pulsar timing arrays may therefore be more likely to find SMBHBs by prioritizing quasars over a random selection of galaxies in their searches. 
    more » « less
  3. Abstract We present a systematic search for radio active galactic nuclei (AGNs) in dwarf galaxies using recent observations taken by the Very Large Array Sky Survey (VLASS). To select these objects, we first establish a criterion to identify radio-excess AGNs using the infrared-radio correlation parameter,q, that describes the tight relation between radio and IR emission in star-forming galaxies. We find a 2σthreshold ofq< 1.94 to select radio-excess AGNs, which is derived from a sample of ∼7000 galaxies across the full mass range in the NASA-Sloan Atlas that have radio and IR detections from VLASS and the Wide-Field Infrared Survey Explorer, respectively. We create catalogs of radio-excess AGNs and star-forming galaxies and make these available to the community. Applying our criterion to dwarf galaxies with stellar massesM≲ 3 × 109Mand redshiftsz≤ 0.15, and carefully removing interlopers, we find 10 radio-excess AGNs with radio-optical positional offsets between ∼0″ and 2.′3 (0–2.7 kpc). Based on statistical arguments and emission line diagnostics, we expect the majority of these radio-excess AGNs to be associated with the dwarf host galaxies rather than background AGNs. Five of the objects have evidence for hosting AGNs at other wavelengths, and five objects are identified as AGNs in dwarf galaxies for the first time. We also identify eight variable radio sources in dwarf galaxies by comparing the VLASS epoch 1 and epoch 2 observations to Faint Images of the Radio Sky at Twenty-centimeters detections presented in A. E. Reines et al. (2020). 
    more » « less
  4. Abstract: Atacama Large Millimeter/submillimeter Array observations have shown that candidate “post-starburst” galaxies (PSBs) at z~0.6 can retain significant molecular gas reservoirs. These results would imply that—unlike many model predictions—galaxies can shut down their star formation before their cold gas reservoirs are depleted. However, these studies inferred star formation rates (SFRs) either from [OII] line fluxes or from spectral energy distribution (SED) modeling and could have missed large dust-obscured contributions to the SFRs. In this study, we present Keck/NIRES observations of 13 massive (M_* >= 10^11M_⊙) PSBs, which allow us to estimate Hα SFRs in these gas-rich PSBs. We confirm the previously inferred low SFRs for the majority of the sample: 11/13 targets show clear Hα absorption, with minimal infilling indicating dust-corrected SFRs of <4.1Msun/yr. These SFRs are notably low given the large H2 reservoirs (∼(1–5) × 10^10Msun) present in 5/13 of these galaxies, placing them significantly offset from star-forming galaxies on the Kennicutt–Schmidt relation for star-forming galaxies. The [NII]/Hα ratios of all 13 PSBs imply contributions from non-star-forming ionization mechanisms (e.g., active galactic nuclei, shocks, or hot evolved stars) to their Hα emission, suggesting that even these low ongoing SFRs may be overestimated. These low Hα SFRs, dust corrected using Av estimates from SED fitting, confirm that these galaxies are very likely quiescent and, thus, that galaxies can quench before their cold gas reservoirs are fully depleted. 
    more » « less
  5. The black hole occupation fraction (focc) defines the fraction of galaxies that harbor central massive black holes (MBHs), irrespective of their accretion activity level. While it is widely accepted that focc is nearly 100% in local massive galaxies with stellar masses M⋆ ≳ 1010 M⊙, it is not yet clear whether MBHs are ubiquitous in less-massive galaxies. In this work, we present new constraints on focc based on over 20 yr of Chandra imaging data for 1606 galaxies within 50 Mpc. We employ a Bayesian model to simultaneously constrain focc and the specific accretion-rate distribution function, p(λ), where the specific accretion rate is defined as λ = LX/M⋆, where LX is the MBH accretion luminosity in the 2─10 keV range. Notably, we find that p(λ) peaks around 1028ergs−1M⊙−1 ; above this value, p(λ) decreases with increasing λ, following a power law that smoothly connects with the probability distribution of bona fide active galactic nuclei. We also find that the occupation fraction decreases dramatically with decreasing M⋆: in high-mass galaxies (M⋆ ≍ 1011−12 M⊙), the occupation fraction is >93% (a 2σ lower limit), and then declines to 66%−7%+8% (1σ errors) between M⋆ ≍ 109−10 M⊙, and to 33%−9%+13% in the dwarf galaxy regime between M⋆ ≍ 108−9 M⊙. Our results have significant implications for the normalization of the MBH mass function over the mass range most relevant for tidal disruption events, extreme mass ratio inspirals, and MBH merger rates that upcoming facilities are poised to explore. 
    more » « less
  6. Abstract We study the black hole mass–host galaxy stellar mass relation,MBH–M*, of a sample ofz< 4 optically variable active galactic nuclei (AGNs) in the COSMOS field. The parent sample of 491 COSMOS AGNs were identified by optical variability from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) program. Using publicly available catalogs and spectra, we consolidate their spectroscopic redshifts and estimate virial black hole masses using broad-line widths and luminosities. We show that variability searches with deep, high-precision photometry like the HSC-SSP can identity AGNs in low-mass galaxies up toz∼ 1. However, their black holes are more massive given their host galaxy stellar masses than predicted by the local relation for active galaxies. We report thatz∼ 0.5–4 variability-selected AGNs are meanwhile more consistent with theMBH–M*relation for local inactive early-type galaxies. This result is in agreement with most previous studies of theMBH–M*relation at similar redshifts and indicates that AGNs selected from variability are not intrinsically different from the broad-line Type 1 AGN population at similar luminosities. Our results demonstrate the need for robust black hole and stellar mass estimates for intermediate-mass black hole candidates in low-mass galaxies at similar redshifts to anchor this scaling relation. Assuming that these results do not reflect a selection bias, they appear to be consistent with self-regulated feedback models wherein the central black hole and stars in galaxies grow in tandem. 
    more » « less
  7. Abstract Quasar feedback is a key ingredient in shaping galaxy evolution. A rare population of extremely red quasars (ERQs) atz= 2−3 are often associated with high-velocity [Oiii]λ5008 outflows and may represent sites of strong feedback. In this paper, we present an X-ray study of 50 ERQs to investigate the link between the X-ray and outflow properties of these intriguing objects. Using hardness ratio analysis, we confirm that the ERQs are heavily obscured systems with gas column density reachingNH= 1023−24cm−2. We identify 20 X-ray-nondetected ERQs at high mid-infrared (MIR) luminosities ofνLν,6μm≳ 3 × 1046erg s−1. By stacking the X-ray observations, we find that the nondetected ERQs are on average underluminous in X-rays by a factor of ∼10 for their MIR luminosities. We consider such X-ray weakness to be due to both heavy gas absorption and intrinsic factors. Moreover, we find that the X-ray-weak sources also display higher-velocity outflows. One option to explain this trend is that weaker X-rays facilitate more vigorous line-driven winds, which then accelerate the [Oiii]-emitting gas to kiloparsec scales. Alternatively, super-Eddington accretion could also lead to intrinsic X-ray weakness and more powerful continuum-driven outflow. 
    more » « less
  8. Abstract Active galactic nuclei (AGN) are the signposts of black hole growth, and likely play an important role in galaxy evolution. An outstanding question is whether AGN of different spectral types indicate different evolutionary stages in the coevolution of black holes and galaxies. We present the angular correlation function between an AGN sample selected from Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) optical photometry and Wide-field Infrared Survey Explorer mid-IR photometry and a luminous red galaxy (LRG) sample from HSC-SSP. We investigate AGN clustering strength as a function of luminosity and spectral features across three independent HSC fields totaling ∼600 deg2, forz∈ 0.6 −1.2 and AGN withL6μm> 3 × 1044erg s−1. There are ∼28,500 AGN and ∼1.5 million LRGs in our primary analysis. We determine the average halo mass for the full AGN sample (Mh≈ 1012.9h−1M), and note that it does not evolve significantly as a function of redshift (over this narrow range) or luminosity. We find that, on average, unobscured AGN (Mh≈ 1013.3h−1M) occupy ∼4.5× more massive halos than obscured AGN (Mh≈ 1012.6h−1M), at 5σstatistical significance using 1D uncertainties, and at 3σusing the full covariance matrix, suggesting a physical difference between unobscured and obscured AGN, beyond the line-of-sight viewing angle. Furthermore, we find evidence for a halo mass dependence on reddening level within the Type I AGN population, which could support the existence of a dust-obscured phase. However, we also find that quite small systematic shifts in the redshift distributions of the AGN sample could explain current and previously observed differences inMh
    more » « less
  9. Abstract Active galactic nuclei (AGN) light curves observed with different wave bands show that the variability in longer wavelength bands lags the variability in shorter wavelength bands. Measuring these lags, or reverberation mapping, is used to measure the radial temperature profile and extent of AGN disks, typically with a reprocessing model that assumes X-rays are the main driver of the variability in other wavelength bands. To demonstrate how this reprocessing works with realistic accretion disk structures, we use 3D local shearing box multifrequency radiation magnetohydrodynamic simulations to model the UV-emitting region of an AGN disk, which is unstable to the magnetorotational instability and convection. At the same time, we inject hard X-rays (>1 keV) into the simulation box to study the effects of X-ray irradiation on the local properties of the turbulence and the resulting variability of the emitted UV light curve. We find that disk turbulence is sufficient to drive intrinsic variability in emitted UV light curves and that a damped random walk model is a good fit to this UV light curve for timescales >5 days. Meanwhile, X-ray irradiation has negligible impact on the power spectrum of the emitted UV light curve. Furthermore, the injected X-ray and emitted UV light curves are only correlated if there is X-ray variability on timescales >1 day, in which case we find a correlation coefficientr= 0.34. These results suggest that if the opacity for hard X-rays is scattering dominated as in the standard disk model, hard X-rays are not the main driver of reverberation signals. 
    more » « less
  10. The supermassive black holes (Mbh~1e6-1e10 Msun) that power luminous active galactic nuclei (AGNs), i.e., quasars, generally show a correlation between thermal disk emission in the ultraviolet (UV) and coronal emission in hard X-rays. In contrast, some “massive” black holes (mBHs; Mbh~1e5 - 1e6 Msun) in low-mass galaxies present curious X-ray properties with coronal radiative output up to 100× weaker than expected. To examine this issue, we present a pilot study incorporating Very Large Array radio observations of a sample of 18 high-accretion-rate (Eddington ratios ledd > 0.1), mBH-powered AGNs (Mbh~1e6 Msun) with Chandra X-ray coverage. Empirical correlations previously revealed in samples of radio-quiet, high-Eddington AGNs indicate that the radio–X-ray luminosity ratio, Lr/Lx, is approximately constant. Through multiwavelength analysis, we instead find that the X-ray-weaker mBHs in our sample tend toward larger values of Lr/Lx even though they remain radio-quiet per their optical–UV properties. This trend results in a tentative but highly intriguing correlation between Lr/Lx and X-ray weakness, which we argue is consistent with a scenario in which X-rays may be preferentially obscured from our line of sight by a “slim” accretion disk. We compare this observation to weak emission-line quasars (AGNs with exceptionally weak broad-line emission and a significant X-ray-weak fraction) and conclude by suggesting that our results may offer a new observational signature for finding high-accretion-rate AGNs. 
    more » « less